N deposition and elevated CO2 on methane emissions: Differential responses of indirect effects compared to direct effects through litter chemistry feedbacks
نویسندگان
چکیده
[1] Increases in atmospheric CO2 concentration and N deposition are expected to affect methane (CH4) production in soils and emission to the atmosphere, directly through increased plant litter production and indirectly through changes in substrate quality. We examined how CH4 emission responded to changes in litter quality under increased N and CO2, beyond differences in CH4 resulting from changes in litter production. We used senesced leaves from C‐labeled plants of Molinia caerulea grown at elevated and ambient CO2 and affected by N fertilization to carry out two experiments: a laboratory litter incubation and a pot experiment. N fertilization increased N and decreased C concentrations in litter whereas elevated CO2 decreased litter quality as reflected in litter C and N concentrations and in the composition of lignin and saturated fatty acids within the litter. In contrast to our expectations, CH4 production in the laboratory incubation decreased when using litter from N‐fertilized plants as substrate, whereas litter from elevated CO2 had no effect, compared to controls without N and at ambient CO2. Owing to high within‐treatment variability in CH4 emissions, none of the treatment effects were reflected in the pot experiment. C mineralization rates were not affected by any of the treatments. The decrease in CH4 emissions due to indirect effects of N availability through litter quality changes (described here for the first time) contrast direct effects of N fertilization on CH4 production. The complex interaction of direct effects with indirect effects of increased N on litter quality may potentially result in a net decrease in CH4 emissions from wetlands in the long term.
منابع مشابه
Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions
[1] The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in ...
متن کاملSoil Processes Affected by Sixteen Grassland Species Grown under Different Environmental Conditions
Plant species, and their interactions with the environment, determine both the quantity and chemistry of organic matter inputs to soils. Indeed, countless studies have linked the quality of organic matter inputs to litter decomposition rates. However, few studies have examined how variation in the quantity and chemistry of plant inputs, caused by either interspecific differences or changing env...
متن کاملEffects of Elevated CO2 on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses
Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presente...
متن کاملEffects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities.
Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest productivity through changes in soil organic matter content, characteriz...
متن کاملElevated CO2 increases the long-term decomposition rate of Quercus myrtifolia leaf litter
Decomposition of Quercus myrtifolia leaf litter in a Florida scrub oak community was followed for 3 years in two separate experiments. In the first experiment, we examined the effects CO2 and herbivore damage on litter quality and subsequent decomposition. Undamaged, chewed and mined litter generated under ambient and elevated (ambient1 350 ppm V) CO2 was allowed to decompose under ambient cond...
متن کامل